7. Neuropathology II

CEREBROVASCULAR DISEASES
Most prevalent neurologic disorders in terms of both morbidity and mortality

Classification
- Hypoxic/ischemic insult due to impaired perfusion
- Hemorrhagic insult due to non-traumatic vessel rupture

Remember!
Hypoxia: reduction in available oxygen, due to
- upper airway obstruction (eg., sudden swelling of laryngeal mucosa)
- inadequate oxygenation of blood in lung diseases
- inadequate O\textsubscript{2} transport in blood because of decreased number of RBCs (anemia)
- inadequate perfusion of blood in the tissues in heart failure

Ischemia: inadequate blood supply to an organ or part of it due to impeded arterial flow or reduced venous drainage

DIFFUSE HYPOXIC INSULT (HYPOXIC ENCEPHALOPATHY)
Pathogenesis
- Transient generalized reduction of cerebral perfusion, ie., in cardiac arrest, severe hypotension of any cause, etc.
 - If the drop of perfusion lasts <3 minutes: reversible hypoxic damage ⇒ transient posthypoxic confusional state ⇒ complete recovery
 - If it lasts >3 minutes (severe global hypoxia) ⇒ irreversible hypoxic damage

Morphology
- Gross: diffuse brain edema with poor demarcation between GM and WM
- LM: red neuron change: in pyramidal neurons and Purkinje cells + laminar necrosis + border zone infarcts

Clinical consequences
- Widespread neuronal damage ⇒ death
- Patients who survive often remain deeply comatose: persistent vegetative state
- Survivors may meet the criteria for "brain death": diffuse cortical injury: isoelectric EEG + brainstem damage: absent reflexes and respiratory drive plus absent cerebral perfusion ⇒ potential donors for organ transplantation

FOCAL ISCHEMIC INSULT
Pathogenesis
- Thrombosis on atheromatous plaques of an artery of the circle of Willis; most frequent site: the middle cerebral artery ⇒ large anemic infarct
- Embolism of the intracerebral arteries from cardiac mural thrombi or thromboemboli from atheromatous plaques within the carotid arteries ⇒ infarct(s) in the territory of the middle cerebral artery
- Narrowing or complete occlusion of small arteries and arterioles in hypertension ⇒ multiple small infarcts in the basal ganglia and deep WM (hypertensive cerebrovascular disease)

CEREBRAL INFARCTION
Morphology
- By 48 hs: the ischemic area becomes pale, soft and swollen, the corticomedullary junction becomes indistinct; LM: red neurons
- From day 2: the ischemic area undergoes colliquative necrosis: grossly wedge-shaped, white-yellow; LM: phagocytosis of myelin breakdown products by foamy macrophages ⇒ astrocytes replace ma-s
- From week 3: gliascar

Clinicopathologic correlations
- Slowly evolving symptoms, taking several hours (clinical designation: stroke)
- Thrombosis of middle cerebral artery (MCA supplies the motor cortex, the sensory cortex, the internal capsule [corticospinal and spinothalamic tract] and nearly all the basal ganglia) ⇒ contralateral hemiparesis and hemisensory loss of the face, upper and lower extremities ⇒ prolonged bed rest
- Thrombosis of internal carotid artery: a) widespread atherosclerosis in the circle of Willis prevents adequate collateral flow ⇒ cerebral infarct; b) minimal atherosclerosis ⇒ excellent collateral circulation ⇒ no consequence
- Thrombosis of basilar artery: lethal before the development of infarction

HYPERTENSIVE CEREBROVASCULAR DISEASE
- Hyaline arteriosclerosis leads to lacunar infarcts and lacunar state: multiple, cavitary lesions of 0.3 to 1.5 cm in diameter, occurring in the basal ganglia, internal capsule, deep WM, and pons

Clinical features
- May be silent
- May cause vascular dementia
- Hypertensive individuals with lacunar state usually suffer from coexisting severe atherosclerosis in the circle of Willis, and can have coexisting glascars due to previous large infarcts. These individuals develop multi-infarct dementia
- Chronic WM injury due to hypertension-induced arteriolar occlusion ⇒ focal myelin loss ⇒ psychomotor slowness (subcortical vascular dementia;Binswanger's disease)

HEMORRHAGIC INSULT
Due to spontaneous vessel rupture. Site:
- In the basal ganglia (ganglionic hemorrhage): cause: hypertensive crisis
- In the lobes (lobar hemorrhage): various causes

HYPERTENSIVE CEREBRAL HEMORRHAGE
Pathogenesis
- In hypertensive adults over 50 years of age
7. Neuropathology II

- Sudden increase in blood pressure (hypertensive crisis) \(\Rightarrow\) rupture of aneurysmally dilated small arteries affected by hyaline arteriolosclerosis

Localization, complications
- 75% - putamen of the lentiform nucleus and thalamus; 15% - pons; 10% - cerebellum
- Extension into the ventricular system \(\Rightarrow\) hemocephalus
- Brain swelling + herniation

Clinicopathologic correlations
- Sudden onset, hemiparesis, hemisensory loss, raising intracranial pressure, loss of consciousness
- Death within hours from hemocephalus or herniation in 40% of cases
- In survivors, complications of prolonged bed rest occur during the first four weeks. Events in patients who survive the first 4 weeks: the hematoma is resorbed over a period of months, and is replaced by glial scar with central cavity; the wall is rich in hemosiderin-laden macrophages \(\Rightarrow\) the neurologic deficits slowly improve

LOBAR HEMORRHAGES
- Multiple; occur in the lobes of cerebral hemispheres
- No association with hypertension
- Causes: thrombocytopenia in blastic crisis of leukemia, cerebral vasculitis, cerebral amyloid angiopathy (amyloidogenic peptides deposit in the meningeal and cortical vessels, weakening of the vessel wall)

NON-TRAUMATIC SUBARACHNOID HEMORRHAGE
Rupture of berry aneurysm or arteriovenous malformation

BERRY ANEURYSM

Pathogenesis
- Congenital, insidiously growing saccular aneurysm
- Usual site: at proximal branching points on the anterior portion of the circle of Willis

LM
- At the neck of the aneurysm, the muscular wall and intimal elastic lamina are absent, the wall of the sac is made up of thickened hyalinized intima

Clinical course
- Spontaneous growth for 25-40 years; greater than 10 mm: high risk of rupture \(\Rightarrow\) subarachnoid hemorrhage
- Involved individuals: between 30-50 ys
- Rupture occurs often with acute increases in intracranial pressure: hypertensive crisis, straining at stool, etc.
- Excruciating headache and rapid loss of consciousness
- Lethal because of massive bleeding + brain edema \(\Rightarrow\) herniation
- Complications in survivors: early: vasospasm in distal arteries \(\Rightarrow\) infarction; late: hydrocephalus

ARTERIOVENOUS MALFORMATION
- Involves vessels in the subarachnoid space extending into the brain parenchyma or may occur exclusively within the brain
- Gross: tangled network of wormlike vascular channels
- Manifest in adolescents and young adults as a seizure disorder, an intracerebral hemorrhage, or a subarachnoid hemorrhage

TUMORS OF THE BRAIN

Classification
- Gliomas
- Medulloblastomas
- Metastases

GLIOMAS
- Derive from glial cells: astrocytomas, glioblastomas, oligodendrogliomas, ependymomas
- LM: grading of nuclear atypia (Gr I to IV)
- Immunohistochemical feature: glial fibrillary acid protein (GFAP)-positivity

ASTROCYTOMAS IN CHILDREN
- Grow slowly; most often located in the cerebellum
- Gross: cystic and well circumscribed
- LM: composed of very well differentiated astrocytes (pilocytic astrocytoma Gr I)
- Most tumors can be resected completely \(\Rightarrow\) good prognosis

ASTROCYTOMAS IN ADULTS
- Arise in the cerebral hemispheres; peak age: 35-40 ys
- Types: well-differentiated astrocytoma, anaplastic astrocytoma
- Molecular genetics: inactivation of the p53 gene; overexpression of the PDGF-A and its receptor; intrinsic tendency to transform into anaplastic astrocytoma \(\Rightarrow\) and then glioblastoma involving the inactivation of several tumor suppr. genes, such as RB and p16/CDKN2A
- Gross: poorly defined, gray-white, infiltrative tumors
- LM: well-differentiated astrocytomas (Gr II): mild nuclear pleomorphism; anaplastic astrocytoma (Gr III): increase in cellularity and nuclear pleomorphism; mitoses
- Outcome of grade II tumors: mean survival with surgery and chemoth: 6-8 ys

GLIOBLASTOMA (GR IV)
- Most common glioma, peak: 45- to 60-y-old age group
- Arises de novo or develops from a well-differentiated astrocytoma or oligodendroglioma
7. Neuropathology II

- Highly invasive

Gross changes
- Heterogeneous cut surface: areas of necrosis, hemorrhage, cystic change; may extend on the other side of the brain: butterfly pattern of spread through the corpus callosum

LM
- Hypercellularity, frank anaplasia, numerous mitoses, necrotic foci surrounded by palisading tumor cells
- Vascular proliferation frequently forming glomeruloid structures

Prognosis
- Extremely bad, mean survival: 1 y

OLIGODENDROGLIOMA (GR II)
- Uncommon cerebral tumor of adults (40-60 yrs)
- Arises in the cerebral hemispheres; relatively well-circumscribed, calcification is common
- LM: composed of neoplastic oligodendrocytes, the nuclei are surrounded by a clear halo of cytoplasm; low mitotic rate.
- Prognosis: better than for astrocytomas if dedifferentiation does not occur

EPENDYMOMA (GR II)
- Uncommon tumor, more often in children than in adults
- In the brain, the tumor usually localizes in and around the fourth ventricle ⇒ sec. hydrocephalus, lethal
- In the spinal cord, the tumor originates from the cauda equina ⇒ the prognosis depends on the resectability; recurrence is likely

MEDULLOBLASTOMA (GR IV)
- Childhood tumor (peak: at 7 y of age); derives from primitive neuroectodermal cells
- Usually in the vermis of cerebellum, LM: densely packed small „blue“ cells (darkly staining nuclei, scanty cytoplasm); frequent mitosis and necrosis
- Metastases via the CSF to the spinal cord
- Prognosis depends on the resectability
- Responds to postoperative chemother and radiotherapy
- 5-y survival is 70%

METASTASES
- Metastatic carcinomas account for approx. 50% of intracranial tumors
- 5 most common primary tumors: lung carcinoma, breast cc, kidney cc, GI tract cc, melanoma

Clinical symptoms of brain tumors
Space-occupying lesion + peritumoral brain edema, may cause
- compression and/or destruction depending on the location: loss of motor functions (paralysis), loss of sensation, stimulation certain part of the brain (epileptic fits)
- obstruction of CSF flow ⇒ hydrocephalus
- sudden hemorrhage ⇒ acute rise in intracranial pressure

Brain tumors do not metastasize; exception: medulloblastoma

TUMORS OF THE DURA, INTRACRANIAL NERVES, AND NEURAL CREST-DERIVED CELLS

MENINGIOMA
- Solitary tu
- Peak age: 50-70 yrs, more common in women
- Attached to the dura, most often in the parasagittal region along the falx cerebri ⇒ compression of the brain from outside
- LM: meningothelial cells form whorls, often with central calcification (psammoma bodies)
- Complete removal ⇒ excellent prognosis

SCHWANNOMA
- Benign intracranial nerve sheath tumor at the cerebellopontine angle, attached to the vestibular branch of the 8th nerve (called acoustic neurinoma by the clinicians)
- Derives from Schwann cells
- LM: mixture of two growth patterns: cellular areas of elongated cell alternate with looser, myxoid regions

Clinical features
- Symptoms: from compression of the nerve (tinnitus, different and sometimes variably changing and intertwining sounds like ringing, hissing, static, etc.; hearing loss)
- If the tumor is greater than 2.5 cm, facial nerve and acustic nerve are damaged during surgical resection

NEUROBLASTOMA
- Highly malignant childhood tumor
- Arise in the adrenal medulla or anywhere along the sympathetic chain

Molecular pathology
- Mutations in the anaplastic lymphoma kinase gene (ALK) and in advanced-stage disease in the NMYC gene

Morphology
- Large retroperitoneal mass
- LM: small, primitive-appearing cells with dark nuclei and scant cytoplasm; sometimes the tumor cells are concentrically arranged about a central space filled with neuropil

Prognostic factors and other features
- Age: children younger than 18 months have a better prognosis
Higher stage or NMYC amplification predict poor outcome
- Secrete catecholamines (similarly to pheochromocytomas), whose metabolites can be used for screening patients

DEMYELINATING DISEASES
In the CNS, axons and dendrites are ensheathed in myelin, formed from folds of oligodendrocyte cell membranes. Functions of myelin: to protect and insulate neuronal processes, to allow rapid transmission of electrical impulses along axons.
- DDs can be due to immunological, viral or chemical mechanisms
- The myelin sheath is destroyed, but the axons remain preserved; the debris of myelin breakdown is phagocytosed by ma-s
- Types:
 - multiple sclerosis - common
 - acute encephalomyelitis - rare
 - central pontine myelinolysis - rare

MULTIPLE SCLEROSIS
- The prevalence is high in countries with moderate or cool climate (ie., northern Europe), and low in the tropics
- More common in whites than other races
- More common in females (3:1); most cases present between 20-40 ys of age

Pathomechanism
- Autoimmune disease directed against myelin, possibly triggered by a virus infection in a genetically susceptible host

Cellular response
- CD4+ TH1 T cells react against self myelin antigens, and secrete IFN-γ, TNF ⇒ activate ma-s, which damage myelin
- CD4+ TH17 T cells secrete IL17, IL22 that recruit neutrophils at sites of myelin damage ⇒ amplification of the inflammatory damage

Humoral response
- IgG autoantibodies may also play a role in the demyelinating process

Morphology

Gross
- Gray-tan, irregularly shaped firm plaques in the WM of brain and spinal cord; commonly beside the lateral ventricles
- Optic nerve is frequently involved

LM
- Active plaques: apoptosis of oligodendrocytes, loss of myelin, foamy ma-s, perivascular ly-c cuff
- Inactive plaques: almost devoid of myelin, the inflammatory process is replaced by gliosis

Clinical features
- Sudden onset of a focal neurological deficit which spontaneously recovers
- Symptoms vary from case to case:
 - limb weakness (most frequent)
 - visual symptoms
 - paresthesia
 - vertigo
 - bladder incontinence

Clinical course
- Relapsing and remitting course; recovery of from each episode of demyelination (relapse) is incomplete ⇒ progressive clinical deterioration
- Most patients die from consequences of prolonged bed rest

ACUTE ENCEPHALOMYELITIS
- Viral inflammation of the brain and spinal cord associated with oligodendrocyte injury, demyelination, and fatal outcome

CENTRAL PONTINE MYELINOLYSIS
- Loss of myelin with preservation of axons and neurons in a symmetric pattern involving the pons
- Occurs in alcoholism, severe electrolyte or osmolar imbalance, rapid correction of hyponatremia
- Rapid development of tetraplegia